Sec. 2 Clirnical Algorithms and Automation
represented on one or two sheets of paper and htas obviated the need for direct
computer use in most of the systems. The contributions of «c¢linical algorithres
to the distribution znd delivery of health care, to the training of parzmedics,
and to quality care audit, have been impressive and substantiel. However, tha
rethodology is not suitable for extension to the complex decision tasks to be

discussed in the following sectious.

3 Databank 2nalvsis for Prognosis and Therapv Selection

3.1 Cverview

Auvtomation cf medical record keeping and the development of computer-based
patient datzbanks have been major research concerns since the earliest davs of
nediczl computing. Most such systems bave attempted to avoid direct interaction
between the computer and the physician recording the data, with the systems of
Weed (1151, [116] and Greenes [32] being notable exceptions. Although the
earliest svstems were designed merely as record-keepinp devices, there have been
several recent attecpts to create programs that could also provide analyses of
the information stored in the computer databank. Some early systems [32}, [47]
had retrieval modules that identified all patient records matching a Boolean
combination of descriptors; however, further analyses of these records for
decision making purposes was left to the investigator. Weed has not stressed an
aralvtical cowponent in his automated problem—~oriented record {116}, but others
have developed decision aids which use medical record svstems fashioned after
his [9€].

The systems for dJdatabenk analysis all depend or the develcpment of a
corplete and accurate nedical record system. If such a system is developed, =z
number of additiomal capabilities cen be provided: (1) correlations among
variables can be calculated, (2) prognostic indicators can be measured, and (3)
the response to various therapies can be compared. A phyvsician faced with =
complex maragement decision can lcok to such a system for assistance in
identifving patients in the past who had similar clinical rroblems and can then
see how those patients responded to various therapies. & clinical investigator
keeping the records of his studv patients on such a2 system can utilize the
pregrem’s statistical capabilities for datz analysis. Fence, 2although these
applications are inberently data-intensive, the kinds of "¥nowledge" generated

bv specialized retrieval and statisticzl routines can provide valuable
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assistaznce for clinical decision wmakers. Fer evzmple, they can help physicians
avoid the inberent biases thet result when the individvel practitioner bases his
decisions primerily on his own anecdotal experience with one or two patients
having a rare disease or complax of sycptoms.

There are nwnany excellent pregrams in this cstegory, one of which is
discussed in some detail in the next section. Several others warrant mention,
however. The HELP System at the University of Utah [109]), ({111}, [112] utilizes
large data file on patients in the Latter-Day Saints Hospital. Clinical experts
formulate specialized "HELP sectors”" which are collections of logical rules that
define the criteria for a particular medical decision. These sectors are
developed by 2an interactive process whereby the expert proposes important
criteria for a given decision znd is oprovided with actual data regarding that
criterion based on relevant patients and controls from the cormputer dztzbank.
The criteria in the sector are thus adjusted by the expert until adequate
discrimination is made to justify using the sector’s logic as a decisiom tool4.
The sectors are then utilized for a variety of tasks throughout the hospital.

Another svstem of interest is that of Feinstein ét zl. at Yale [17}. Thev
ked specific pstient management decisioms Iin mind when they developed their
interactive system for estimating prognosis and guiding management 1in patients
with lung cancer. Similarly, Rosati et al. have developed 2 system at Duke
University which wutilizes a 1large databank on patients who have undergone
coronary arteriograpby [82]. Y¥ew patients can be matched against those 4in the
databank to help determine patient prognosis under a variety of management

alternatives.

3.2 Example

One of the most successful projects in this category is the ARAMIS syster
of Fries [20]. The approach was designed originally for use in an outpatient
rheumatology clinic, but then broadened to a general clinical database system
(ToD) [118], (l1°2] so that it became transferable to clinics 1in oncolegy,
vetabolic disease, cardiology, endocrinology, and certain pediatric
subspecialties. All clinic records are kept in a flow-charting format in which
a column in a 1large table indicates 2 specific clinic visit and tre rous

indicate the relevant clinical oparameters that are Dbeing followed over time.

4 . . . :

*This Erocess mizht be seen as a tool to assist with the <formulation cf
clinical algorithms as discussed in the previocus section. Ancther zpproach
using databank znalysis for algorithm development is described in [25].
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These charts are maintained by the physicians seeing the patient in clinic, and
the new colurn o0f data is later ransferred to the computer databank by a
ranscriptionist; in this way time-criented data om all patients are kept
current. The dJdefined database (clinical vparameters to be followed) is
determined by clinical experts, and in the case of rheumatic disesses has now
been standardized on a natiomal scale [26].

The information in the databank can be utilized to ¢reate a prese summary
of the patient’s current status, and there are graphical capabilities which cﬁn
plot specific parameters for a patient over time [118]. However, it is in the
analysis of stored clinical experience that the system has its greatest
potential wutility (21]. In addition to performing search and statistical
functions such as those developed in databank systems for clinical investigation
{451, (5921, APAMIS offers a prognostic analysis for a new patient when a
management decision is to be made. Using the consultative services of the
Stanford Immumology Division, an individual practitioner may select clinical
indices for his patient that he would like matched against other patients in the
databank. Pased on 2 to 5 such descriptors, the computer locates relevant prior
patients and prepares a report outlining their prognosis with respect to a
variety of endpoints (e.g., death, development of renal failure, arthritic
status, »pleurisy, etc.). Therapy recormendations are also generated omn the
basis of a response index that is calculated for the matched patients. A prose
case analysis for the physician’s patient can also be generated; this readable
dccument sumrarizes the relevant data £rom the databank and explains the basis
for the therapeutic recommendation.

The rheumatologic databank generated under ARAMIS has now been expanded to
involve a national network of iomunologists who are accurulating time-oriented
data on their patients. This national project seeks in part to accumulate a
large enough databank so that grcoups of retrieved patients will be sizable aund
thus control f£cr some observer variability and make the svstem’s recommendations

more statistically defensible.

3.3 iscussion of the Methodology

The databank analysis systems described have powerful capabilities to offer
to the individual clinical decision maker. Furthermore, medical computing
researchers recognize the potential value of large databanks in suppcrting many

of the other decision making approaches discussed in subsequent sections. There
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are important additionzl issues regarding databank systems, however, uhich are
discussed below.

(1) Data acquisiticn reémains a major problem. Many systems have avoided
direct physician-computer interaction but have then been faced with the expense
and errors of transcription. The developers of one well accepted record system
still express their desire to implement a direct interface with the physician
for these reasons, although thev recognize the difficulties encountered in
encouraging hands-on use of a computer system by doctors (10C].

(2) Analysis of data in the system can be conpliczted by missing values
that freguently occur, outlying values, and poor reproducibility of data across
time and among physicians.

(3) The decisicn aids provided tend to emphasize patient management rather
than diagnosis. Feinstein’s system [17] is only useful for patients with lung
cancer, for example, and the ARAMIS (TCD) prognostic routines, which are
designed for patient management, assume that the patient’s rheumatologic
diagnosis is already known.

(4) There 1is no formal correlation between the way expert physicians
approach patient mnpanagement decisions and the way the programs arrive at
recomnendations. TFeinstein and Koss felt that the acceptability of their system
would be limited by a purely statistical approach, and they therefore chose to
nimic human reasoning processes to a large extent [53], but their approash
appears to be an exception.

(5) Data storage space requirements can be large since the decision aids of
course require a ccmprehensive medical record system as a basic component.

Slamecka has distinguished between structured and empirical approaches to
clinical consulting systems [96], pointing out that databanks provide a largely
empirical basis for advice whereas structured approaches rely on judgmental
knowledge elicited from the literature or the minds of experts. It is important
te note, however, that Jjudgmental knowledge is itself based on empirical
information. Even the expert "intuitions" that many researchers have tried to
captura are based on that expert opractitioner’s own observations and "data
collection” over vears of experience. Thus one might argue that large,
complete, and flexible datzbanks could £form the basis for large amounts of
judgmental knowledge that we now have te elicit from other sources. Some
rasearchers have indicated a desire to experiment with methods for the sutomatic

generation of medical decision rules from datzbanks, and one cowponent o0f the
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research on Slamecka’s MARIS system is appareuntly pointed in that direction
(96]. 1Indeed, some of the wmost exciting and practical uses of large databanks
zay be found precisely at the interface with thoss knowledge engineering tasks

that have rmost confounded researchers in medical sywmbolic reasoning [5]-

4 Mathematical Models of Physical Processes

4.1 Qverview

Pathophysiologic processes can be well-described by mathematical formulase

[l

n a limited number of clinical problem areas. Such domains have lent
themselves well to the development of computer-based decision aids since the
issves are generslly well-defined. The actual techniques used by such programs
tend to reflect the details of the individual zpplications, the most celebrated
of which have been in pharmacokinetics (specifically digitalis dosing), acid-
base/electrolyte disorders, and respiratory care ([63].

Cne or two cooperating experts in the field generazlly assist with the
dafinition of pertinent variables and the mathematical characterization of the
relationships among them. Often an interactive program is then developed which
requests the relevant data, makes the appropriate computations, and provides a
clinical analysis or recommendation for therapy based upon the computational
results. Some of the programs have also involved branched-chain logic to guide
decisions about what further data are needed for adequate analysiss.

Programs to assist with digitalis dosing have progressed to the inclusion
of broader medical knowledge over the last ten years. The earliest work was
Jelliffe’s ([63] and was based vupon his considerable experience studying the
pbarmacokinetics of the cardiac glycosides. His computer program used
nathematical formulations based on parameters such as therapeutic goals (e.g.,
desired predicted blood levels), body weight, renal function, and route of
administration. In one study he showed that computer recoommendations reduced
the frequency of adverse digitalis reactions from 235% to 127 [44). Later,
another group revised the Jelliffe model to permit a feedback loop in which the

digitalis blood levels obtained with 1initial doses of the drug were considered

>"Branched-chain" logic refers to mechanisms by whick portions of a
decision networl cam be comsidered or ignored depending upon the dazta on a given
case. For example, in an acid-base program the anion gap might be calculated
and a branch-point could then determine whether the pathway for analyzing an
elevatad anion gap would be required. If the gap were not elevated, that whole
portion of the logic network could be skipped.

155



Sec. 4 Mathematical Models of Physical Processes Appendix B

in subsequent therapy recommendations [72], [89]. More recently, a third group
in Boston, noting the insensitivity of the first two apprcaches to the kinds of
nonnureric observations that experts tend to use in modifying digitalis therapy,
augrmented the pharmacolkinetic model with a patient-specific model of clinical
status (3l1]. Running their system in a monitaring mode, in parallel with actual
¢linical practice on a cardiology service, they found that each patient in the
trial in whom toxicity developed had received more digitalis than would have

been recommended by their program.

5.2 Example

Perhaps the best known program in this category is the 1interactive system
developed at Boston’s Beth Israel Hospital by Bleich. Originally designed as a
program for assessment of acid-base disorders [2], it was lacer expanded to
consider electrolyte abnormalities as well [3], [4]. The knowledge in Bleich”s
program 1s a distillation of his own expertise regarding acid-base and
electrolyte disorders. The system begins by collecting initial laboratory data
from the physician seeking advice on ‘a patient’s management. Branched-chain
logic 1is triggered by abnormalities in the initial data so that only the
pertinent sections of the extensive decision pathways created by Bleich are
explored. Essentially all questions asked by the program are uaumerical
laboratory values or "yes-no" questions (e.g., '"Does the patient have pitting
edema?"). Depending wpon the complexity and severity of the case, the program
eventually generates an evaluation note that may vary in length from a few lines
to several pages. Included are suggestions regarding possible causes of the
observed abnormalities and suggestions for correcting them. Literature
references are also provided. ‘

Although the program was made available at several East Coast institutions,
few physicians accepted it as an oungoing clinical tool. Bleich points out that
part of the reason for this was the system”s inherent educational impact;
physicians simply began to anticipate its analysis after they had used it a few
times [3]. More recently he has been experimenting with the program operating
as a monitoring system5, thereby avoiding direct interaction with the physician.

The system’s lack of sustained acceptance by physicians is probably due to
more than its educational impact, however. For example, there is no feedback in

the system; every patient is seen as 2 new case and the program has no concept

6Personal communication with Dr. Rleich, 1975.
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of following a patient’s respomse to prior therapeutic measures. Furthermore,
the program generates differential diagnesis lists but does not pursue specific
etiologiesy; this can be particularly bothersome when there are nultiple
coexistent disturbances in a patient and the program simply suggests parallel
lists of etiologies without noting or pursuing the possible interrelationships.
Finally, the system is highly 41individualized in that it contains
consideration of specific relationships only when Bleich specifically thought to
include them in the logic network. Cf course human consultants also give
personalized advice which may differ from that obtained from other expertse.
However, a2 group of researchers in Britain ([79) who analvzed Bleich’s program
along with four other acid-base/electrolyte systems, found total agreement among
the programs in only 207 of test cases when these systems were asked to define
the acid-base disturbance and the degree of compensation present. Their
analysis does not reveal which of the programs reached the correct decision,
however, and it may be that the results are more an indictment of the other four

programs than a valid criticism of the advice from Bleich’s acid-base component.

4.3 Discussion of the Methodologies

The programs mentioned in this section are very different* in several
respects, and each tends to overlap with other methodologieg we have discussed.
Rleich’s program, for example, is essentially a complicated c¢linical algorithm
interfaced with mathematical formulatioms of electrolyte and acid-base
pathophysiology. As such it suffers from the weazknesses of all algorithmic
approaches, most importantly its highly structured and inflexible logic which is
unable to contend with unforseen circumstances not specifically included 1in the
2lgorithm. The digitalis dosing programs all draw on mathematical techniques
from the field of bicmedical modeling (not discussed here), but have recently
shown more reliance on methods from other areas as well. In particular these
have included symbolic reasoning methods that allow clinical expertise to be
captured and wutilized in <conjunction with mathematical techmiques {21]. The
Boston group that developed this most recent digitalis program is interested in
similarly developing an acid-base/electrolyte system so that Judgmental
ncwledge of experts can be interfaced with the mathematical models of

pathophysiology7.

7Perscnal corrunication, 1978, with Prof. Peter Szolovits.
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5 Statistical Pattern Matching Techniques

5.1 Querview

Pattern nmatching techniques define the mathematical relationship between
measurable features and classifications of objects {12], [46]. In medicine, the
presence or absence of each of several signs and symptoms in a patient may be
definitive for the classification of the patient as "abnormal" or into the
category of a specific disease. They are also used for prognosis ([l], or
predicting disease duration, time course, and outcomes. These techniques have
been applied to a variety of medical domains, such as image processing and
signal znalysis, in additiom to computer-assisted diagnosis.

In order to find the diagnostic pattern, or discriminant function, the
method requires 2 training set of objects, for which the correct classification
is already known, as well as reliable wvalues for their measured features. If
the form and parameters are unot known for the statistical distributions
underlying the features, them they must be estimated. Parametric techniques
focus on learning the parameters of the probability density functions, while

non-parzmetric (or "distribution-free") techniques make no assumptions about the

form 'of the distributions. After training, then, the pattern can be matched to
new, unclassified objects to aid 1in deciding the category to which the new
object belongss.

There are numerous variations on this. general methodology, most notably in
the mathematical techniques wused to extract characteristic measurements (the
features) and to £find and refine the pattern classifier during training. Tor
example, linear regression analysis iIs a commonly used technique for finding the
coefficients of an equation that defines a recurring pattern or category of
diagnostic or prognostic interest. Recent work emphasizes structural
relationships among sets of features more than statistical onmes.

Three of the best knowmn training criteria £for the discriminant furction

are:

(a) Rayes’ criterion: choosegthe function that has the minimum cost associated
with incorrect diagnoses~’;

(b)Y clustering criterion: choose the function that produces the tightest
clusters;

(¢) least-squared-error criterion: choose the function that minimizes the
squared differences between predicted and observed measurement wvalues.

81t is possible to detect atterns, even without a known classification for
L is p L P n 2 kn : :
objects in the training set, with so-called "unsupervised learning technigques.
Also, it is possible to work with both numerical and non-numerical measurements.

9See Section 5 for further discussion.
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Ten commonly used mathematical models based on these criteria have been

shown to produce remarkably similar diagnostic results for the same data [7].

5.2 Example

There are numerous papers reporting on the use of pattern recognition methods in
medicine. Armitage [1] discusses three examples of prognostic studies, with an
eemphasis on regression methods. Siegel et al. [27]) discuss uses of cluster
analysis. One recent diagnostic application wusing Bayes” criterion (67]
classifies patients having chest pains into three categories: Dj: acute
myocardial infarction (MI); Djy: coronary insufficiency; and Dj3: non-cardiac
causes of chest pain. The nuneed for early diagnosis of heart attacks without
laboratory tests is a prevalent problem, yet physicians are known to misclassify
about one third of the patients in categories D; and D, and about 80% of these
in D4. In order to determine the correct classificatiom, each patiemt in the
training set was classified after 3 days, based on laboratory data including
electrocardiogram (ECG) and blood data (cardiac enzymes). There remained some
uncertainty about several patiemts with "probable MI." Seventeen variables were
selected from many: 9 features with continuous values (including age, heart
rates, white blood count, and hemoglobin) and & features with discrete values
(sex and 7 ECG features).

The training data were measurements on 247 patients. The decision rule was
chosen using Bayes” theorem to compute the posterior probabilities of each
diagnostic class given the feature vector X. (X = [x |, x 2, «0o. , x 17}.10.
Then a decision rule was chosen to minimize the probability of error, that is,
to adjust the coefficients on the feature vector X 1l gych that for the correct

class Dy:
P(Dy |X)=MAX (P(D1[X), P(D2IX), P (D3IX))

The class conditional probability density functions must be estimated initially,
and the performance of the decision rule depends on the accuracy of the assumed

nodel.

Using the same 247 patients for testing the approach, the trained

1Cthe posterior probability of a diagnostic class, represented as P(D4[X),
is the probability that a patient falls in diagnostic category Dj given thaf the
feature vector X has been observed.

llgee [56] for a study in which the coefficients are reported because of
their medical imporc.
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classifier averaged 807 correct diagnoses over the three clzsses, using only
data available at the time of admission. Physicians, using more dataz than the
conputer, averaged only 50.5%7 correct over these three categories for the same
patients. Training the classifier with a subset of the patients, and using the

remainder for testing, produced nearly as good results.

5.3 Discussion of the Methodology

The number of reported medical applications of pattern recognition
techniques is large, but there are also numerous problems associated with the
methodology. The most obvious difficulties are cheoosing the set of features in
the first place, collecting reliable measurements on a large sample, and
verifving the initial classifications among the training data. Current
techniques are inadequate for problems in which trends or movement of features
are important characteristics of the categories. Also the problems for which
existing techniques are accurate are those that are well characterized by a

smzll number of features ("dimensions of the space™).

As with all techniques based on statistics, the size of the sample wused to

define the categories 1s an important consideration. As the'number of important
features and the number of relevant categories 1increase, the required size of
the training set also increases. In one test [7], pattern classifiers trained
to discriminate among 20 disease’ categories from 50 symptoms were correct 517 -~
647 of the time. The same methods were used to train classifiers to
discriminate between 2 of the diseases, from the same 50 symptoms, and produced
correct diagnoses 927 - 987 of the time.

The context in which a local pattern is identified raises problems related
to the issue of utilizing medical knowledge. It 1is difficult to find and use
classifiers that are best for a small decision, such as whether an area of an X-
ray 1is 1inside or outside the heart, and 1integrate those inte a global
classifier, such as one for abnormal heart volume.

Accurate application of a classifier in a hospital setting also requires
that the measurements in that clinical environment are consistent with the
measurements used to train the classifier initially. For example, if diseases
and symptoms are defined differently in the new setting, or if lab test values
are reported in different ranges -— or different lab tests wused -- then
decisions based on the classification are not reliable.

Pattern recognition techniques are often misapplied in medical domains in
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which the assumptions are violated. Some of the difficulties noted above are
avoided 1in systems that integrate structural knowledge into the numerical
methods and in systems that integrate human and wmachine capabilities into
single, interactive systems. These modifications will overcome one of the major
difficulties seen in completely automated systems, that of providing the system

with good "intuitions" based on anm expert’s a priori knowledge and experience
(461

] Bayesian Statistical Approaches
6.1 Qverview

More work has been done on Bayesian approaches to computer-based medical
decision making than on any of the other methodologies we have discussed. The
appeal of Bayes’ Theorer 12 j5 clear: it potentially offers an exact method for
computing the probability of a disease based on observations and data regarding
the frequency with which these observations are knovm to occur £for specified
diseases. In several domains the technique has been shown to be exceedingly
accurate, but there are also several 1limitations to the approach which we
discuss below.

In its sioplest formulation, Bayes” Theorem can be seen as a mechanism to
calculate the probability of a disease, in light of specified evidence, from the
2 priori probability of the disease and the conditional probabilities relating
the observaticns to the diseases in which they may cccur. For example, suppose
disease Dj is one of n mutually exclusive diagnoses under counsideration and E is
the evidence or observations supporting that diagnosis. Then 1f P(Dj) is the a

priori probability of the ith disease:

P(Di) P(ElDi)

P(D,!E) =
) 5 P(D,) P(EID,)

P(D
2 POy i
Jd

The theorem can also be represented or derived in a variety of other forms,
including an odds/likelihood ratio formulation. We carmot Include such details
here, but any introductory statistics book or Lusted’s classic volume [58]

presents the subject in counsiderable detail.

ol - - . .
123150 often referred to as Baves’ rule, discriminant, or criterion
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Among the most commonly recognized problems with the wutilization of a
Bayesian approach 1is the large asmount of datz required to determine all the
conditional probabilities needed in the rigorous application of the formula.
Chart review or computer-based analysis of large databanks occasionally allows
most of the necessary conditional prebabilities to be obtained. A wvariety of
additional assumptions must be made. For example: (1) the diseases under
consideration are assumed mutually exclusive and exhaustive (i.e., the patient

s assumed ¢ (2) the

1enaasanc el
15283385y (&) Hue L4

H

cbservaticns are
assumed to be conditionally independent over a given diseasel3, and (3) the
incidence of the symptoms of a disease is assumed to be stationary (i.e., the
model generally does not allow for changes in disease patterns over time).

One of the earliest Bayesian programs was Warner’s system for the diagnosis
of congenital heart disease (107). PFe compiled data on 23 patients and generated
a symptom-disease matrix consisting of 533 symptoms (attributes) and 35 disease
entities. The diagrostic performance of the computer, based on the presence or
absence of the 53 symptoms in a new patient, was then compared to that of two
evperienced physicians. The program was shown to “reach diagncses with an
accuracy equal to that of the experts. Furthermore, systen performance vas
shown to improve as the statistics in the symptom~disezse matrix stabilized with
the addition of increasing numbers of patients.

In 1968 Gorry and Barmett pointed out that Warner’s program had required
making all 33 observations for every patient to be diagrosed, a situation which
would not be realistic for many clinical applications. They therefore utilized
a2 wmodification of Bayes”’ Theorem in which observations are counsidered
sequentially. Their computer program analyzed observations one at a time,
suggested which test would be most useful if performed next, and included
termination criteria so that a diagnosis could be reached, when appropriate,
without needing to make all the observations [28]. Decisions regarding tests
and termination were made on the basis of <calculations of expected costs and
benefits at each step in the logical processld. Using the szme symptom-disease

matrix developed by Warner, they were able to attain equivalent diagnostic

13The purest form of Baves’ Theorem allows conditional dependencies, and
the order 1in which evidence is obtained, to be explicitly comnsidered in the
analysis. However, the nuwmber of required conditional ©probzbilities is so
unwieldy that conditional independence of observations, and non-dependence on
the order of observations, is generally assumed [101].

ligae the decision theory discussion in Section 7.
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performance using only 6.9 tests on averagels. Thev pointed out that, because
the cests of medical tests may be significant (in terms of patient discomfort,
tire expended, and financial expense), the use of inefficient testing sequences
should be regarded as ineffective dizgnosis. Warmer has alsc more recently
included Gorry and Barnett’s sequential diagnosis approach in an application
regarding structured patient history-taking [1101.

The medical computing literature now includes many examples of Bayesian
diagnosis programs, most of which have used the nonsequential approach, in
addition to the necessary assumptions of symptom independence and mutual
exclusivity of disease as discussed azbove. One particularly successful research

effort has been chosen for discussion.

6.2 Example

Since the late 1960°s deDombal and associates, at the University of Lecds
in England, have been studying the diagnostic process and developing computer-
based decision aids using Bayesian probability theory. Their area of
investigation has been gastrointestinal diseases, otigirally acute abdominal
pain [IC] with more recent analyses of dyspepsia [39]
[12s7.

and gastric carcinema

Their program for assessment of acute abdominal pain was evaluated in the
emergency room of their affiliated hospital [10]. FEmergency physicians filled
out data sheets summarizing c¢linica2l and laboratory findings on 304 patients
presenting with abdominal pain of acute onset. The data from these sheets
became the attributes that were subjected to Bayesian analysis; the required
conditicnal probabilities had been previously compiled from a large group of
patients with one of 7 possible diagnosesla. Thus the Bayesian formulation
assumed each patient had one of these diseases and would select the most likely
on the basis of recorded observations. Diagnostic suggestions were obtained in
batch wmDode and did not require direct interaction between physician and
computer; the program could generate results in from 30 seconds to 15 winutes
depending upon the level of system use at the time of analysis {38]. Thus the
computer output could have been made available to the emergency troom physician,
on average, within 5 minutes after the data form was completed and banded to the

technician assisting with the study.

157ests for determining attributes were defined somewhat di
thev had been by Warner. Thus the maximum number of tests was 2

fferently than
the 53 observations used ipn the original study.

rather than

16appendicitis, diverticulitis, perforated ulcer, cholecystitis, small
bowel obstruction, pancreatitis, and non-specific abdominzl pain.
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During the study (10], however, these computer-generated diagnoses were
simply saved and later compared te (a) the diegnoses reached by the attending
¢clinicians, and (b) the wultimate diagnosis verified at surgery or through
appropriate tests. Although the clinicians reached the correct diagnosis in
only 657-80%Z of the 304 <cases (with accuracy depending upon the individual’s
training and experience), the program was correct in 91.8% of cases.
Furthermore, in 6 of the 7 disease categories the computer was proved more
likely than the senior clinician in charge of a case to assign the patient to
the correct disease category. Of particular interest was the program”s accuracy
regarding appendicitis - a diagnosis which is often made incorrectly. In no
cases of appendicitis did the computer fail to malke the correct diagnosis, and
in only six cases were patients with non-specific abdominal pein incorrectly
classified &as having appendicitis. Rased on the actuzl c¢linical decisions,
hcwever, over 20 patients with non-specific abdominal pain were unnecessarily
taken to surgery for appendicitis, and in six czses patients with appendicitis
were ''watched" for over eight hours before they were finally taken to the
operating room.

These investigators also performed a fascinating experimernt in which they
compared the program’s performance based on data derived from 600 real patients,
with the accuracy the system achieved using "estimates" of conditional
probabiliries obtained from experts (54117, As discussed above, the program was
significantly nore effective than the unaided clinicizn when real-life data were
utilized. However, it performed significantly less well than clinicians when
expert estimates were used. The results supported what several other observers
have found, namely that physicians often have very little idea of the "true”
probabilities for symptom-disease relationships.

Another Leeds study of note was an analysis of the effect of the system on
the performance of clinicians [11}. The trial we have merntioned that involved
304 patients was eventually extended to 552 before termination. Although the
corputer’s accurscy remaired in the range of 217 throughout this period, the
performance of clinicians was noted to improve markedly over ¢time. Fewer
negative laparctomies were performed, for example, and the number of acuts
appendices that perforated (ruptured) also decligped. However, these data

reverted to Dbaseline after the study was terminated, suggesting that rhe

175ych  estimates are referred to as  "subjective" or "personal”
prooabﬂllt*es, and some investigators have argued that they should be utilized

in ge51an systems when formally derived conditional probabilities are not
ava;la {sej.
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constant awareness of computer monitoring and feedback regarding system
performance had temporarily generated 2 heightened awareness of intellectual

procasses among the hospital’s surgeons.

6.3 Discussion of the Methodologvy

The ideal wmatching of the problem of acute abdominal pain and Bayesian
analysis must also be emphasized; the wmethodology cannot mnecessarily be as
effectively applied in other medical domains where the following limitations of
the Bayesian approach may have a greater impact.

(1) The assumption of conditional independence of symptoms usually does not
apply a2nd can lead to substantial errors in certain settings [66]. This has led
some investigators to seek new numerical techniques that avoid the independence
zssumption [8]. If a pure Bayesian formulation is utilized without wmaking the
independence assumption, however, the number of required conditional
probabilities becomes prohibitive for complex rezl world problems [101].

(2) The assumption of mutual exclusivity and exhaustiveness of disease
categories 1is usually false. In actual practice conrcurreant and overlapping
disease categories are common. In delombal’s system, for example, many of .the
abdominal pain diagnoses 1mwissed were outside the seven ''recognized”
possibilities; if a program starts with an assumption that it need only comsider
a small number of defined likely diagnoses, it will inevitably miss the rare or
unexpected cases ~ precisely the ones with which the clinician is most apt to
need assistance.

(3) In many domains it wmay be 1inaccurate to assume that relevant
conditional procbabilities are stable over time (e.g., the likelihood that a
particular bacterium will be sensitive to a specific antibiotic). Furthernmore,
diagnostic categories and definitions are constantly changing, as are
physicians’ observational techniques, thereby invalidacing data previously
accumulated. A similar problem results from veriations inr a opriori
probabilities depending upon the population from which a patient is drawn. Some
observers feel that these are major limitations to the wuse of Bayesian
techniques [13].

In general, then, a purely Bayesian approach can so constrain problem
formulation as to male a particular application unrealistic and hence
unworkable. Furthermore, even when diagnostic performance is excellent such as
in deDombal’s approach to abdominal pain evaluatiom, clinical implementation and

system acceptance will generally be difficult.
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7 Decision Theoretical Approaches

7.1 Overview
Bayes’ Theorem is only one of several techniques used in the larger {ield
of decision analysis, and there has recently been Increasing interest in the
wavs in which decision theory might be applied to medicine and adapted for
automation. Several excellent reviews of the field are available in basic
reviews [40], textbooks (78], and medically-oriented Jjournal articles [6l1],
{871, {102]. 1In general terms, decision analysis can be seen as any attempt to
consider values associated with choices, as well as probabilities, in order to
analyze the processes by which decisions are made or should be made. Schwartz
identifies the calculation of '"expected value" as central to formal decisiom
analysis [87]. Cinsberg contrasts medical classification problems (e.g.,
izgnosis) with broader decision problems (e.g., "What should I do for this
patient?”"), and asserts that most important medical decisions fall in the latter
category and are best approached through decision analysis [25]. The f{ollowing
topics are among the central issues in the field.

(1) Decisicn Trees. The decision making process can be seen as a sequence

of steps in which the clinician selects a path through a network of plausible
events and actions. Modes 1in this tree-shaped network are of two kinds:

decision nodes, where the c¢linicfan must choose from a2 set of actiomns, and

chance nodes, where the outcome is not directly controlled by the clinician but
is a probabilistic response of the patient to some action taken. For example, a
physician may choose to perform a certain test (decision node) but the
occurrence or nounoccurrence of complications ‘'may be 1largely a matter of
statistical likelihood (chance node). 3By analyzing a difficult deci;ion process
before taking any actioms, it may be possible to delineate in advance all
pertinent chance and decision nodes, all plausible outcomes, plus the paths by
which these outcomes might be reached. Furthermore, data may exist to allcw
specific probabilities to be associated with each chance node in the tree.

(2) Expected Values. In actual practice physicians make sequential

decisions based on more than the probabilities associated with the chance node
that follows. TFor example, the best possible cutcome is not necessarily sought
if the costs associated with that "path" far outweigh those along alternate
pathways (e.g., a definitive diagnosis may not be sought if the required testing

procedure is expensive or painful and patient management will be unaffected;
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similarly, some patients prefer to "live with" an ingquinal bternia rather than
undergo a surgical repair procedure). Thus anticipated 'costs" (financial,
camplications, discomfort, patient preference) can be associated with the
decision nodes. Using the probabilities at chance nodes, the costs at decision
nodes, and the "value" of the various outcomes, an "expected value" for each
pathway through the tree (and im turn each node) can be calculated. The ideal
pathway, then, is the one which maximizes the expected value.

(3) Eliciting Values. Obtaining from physicians and patients the cost and

values they associate with various tests and outcomes can be a formidable
problem, particularly since formal analysis requires expressing the various
casts in standardized units. One approach has been simply to ask £for value
ratings on a hypothetical scale, but it can be difficult to get the physician or
patient to keep the valuesl8 separate from their knowledge of the probabilities
linked to the associated chance nodes. An alternate approach has been the
development of lottery games. Inferences regarding values can be made by
identifying the odds, in a hypothetical lottery, at which the physician or
patient is indifferent regarding taking a course of action with certain outcome
and betting ou a course with preferable outcome but with a finite chance of
significant negative costs 1if the '"bet" is lost. In certain settings this
approach may: be accepted and provide important guidelines in decision making
[711.

(4) Test Evaluatiom. Since the tests which 1lie at decision nodes are

central to clinical decision analysis, it is crucial to know the predictive
value of tests that are available. This leads to consideration of test
sensitivity, specificity, receiver operator characteristic curves, and
sensitivity analysis. Such issues are discussed by Komaroff et al. in this
issue of the PROCEEDINGS and have also been summarized elsewhere in the clinfcal
fterature [62].

Many of the major studies of clinical decision analysis have not
specifically involved computer implementations. Schwartz et al. examined the
workup of renal vascular hypertension, developing arguments to shew that for
certain kinds of cases a purely qualitative theoretical approach was feasible
and useful [87]. However, they showed that for wmore complex clinically
chzllenging cases the decisiouns could not be adequately sorted out without the

introduction of numerical techniques. Since it was impractical to assume that

. 1§a%§g] termed Murilities"™ in some references; hence the term "utility
theory .
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clinicians would ever take the time to carry out a detailed guantitative
decision analysis by hand, they pointed out the logiczl role for the computer in
assisting with sucPh tasks and accordingly developed the system we discuss as an
example below [2°].

Other colleagues of Schwartz at Tufts have been similarly active in
applying decision theory to c¢linical problems. Pauker and Kassirer have
examined applications of formal cost-benefit znalysis to therapy selectiom [68]
and Pauvker has also looked at possible applications of the theory to the
menagement of patients with coronary artery disease ([70]. An eutire issue of

the New Fngland Journal of Medicine has also been devoted to papers on this

wethodclogy (41].

7.2 Example

Computer implementations of clinical decision analysis have appeared with
increasing frequency since the mid-1960°s. Perhaps the earliest major work was
that of Giansberg at Rand Corporation [24], with more recent systems repdrted by
Pliskin znd Reck (74] and Safran et al. [8°5].

We will briefly describe here the program of Gorry et 2l., developed for
the management of acute renal failure [29]. Drawing upon Gorry’s experience
with the sequential Bayesian approach previously mentioned [28]1, the
investigators recognized the need ¢to incorporate some way of balancing the
dangers and discomforts of a procedure against the value of the information to
be gained. They divided their program into two parts: phase I counsidered only
tests with minimal risk (e.g., history, examination, blood tests) and phase II
considered procedures involving more risk and 1inconvenience. The phase I
program considered 14 of the most common causes of remal failure and utilized a
sequential test selection process based on Bayes’ Theorem and omitting more
advanced decision theoretical methodology [28]. The conditional probabilities
utilizgd were subjective estimates obtained from an expert nephrologist and were
therefore potentially as problematic as those discussed by Leaper et al. [54]
{see Section 8.2). The researchers found that they had no choice but to use
expert estimates, however, since detailed quantitative data were not available
either in databanks nor the literature.

It is 1in the phase II program that the methods of decision theory were
employed because it was in this portion of the decision preocess that the risks

of procedures became important considerations. At each step in the decision

168



Sec. 7 Decision Theoretical Approaches

process this program considers wbether it 1is best to treat the patient
irmediately or to first carry out an additicnal diagnostic test. To make this
decision the program identifies the treatment with the highest current expected
value (in the absence of <further testing), and compares this with the expected
values of treatments that could be instituted 1if another diagnostic test were
performed. Comparison of the expected values are made in light of the risk of
the test in order to determine whether the overall expected value of the test is
greater than that of immediate treatment. The relevant values and probabilities
of outconmes of treatment were cobtained as subjective estimates from
nephrologists in the same way that symptom—~disease data had beern obtained. All
estimates were gradually refined as they gained experience using the progranm,
however.

The program was evaluated on 18 test cases in which the true diagnosis was
uncertain but two expert nephrologists were willing to make management
decisions. In 14 of the cases the program selectad the same therapeutic plan or
diagnostic test as was chosen by the experts. For three of the four remaining
cases the program’s éecision was the physicians’ segond choice and was, they
felt, a reasonable alternative plan of action. In the last case the physicians
also accepted the program’s decision as reasonable although it was not among

their first two choices.

7.3 Discussion of the Methodology

The excellent performance of Corry’s program, despite its reliance on
subjective estimates from experts, may serve to emphasize the importance of the
clinical analysis that wunderlies the decision theoretical approach. The
reasoning steps in managing clinical cases have been dissected in such detail
that small errors in the probability estimates are apparently much less
ipportant than they were for deDombal’s purely Bayesian approach [54}. Gorry
suggests this may be simply because the decisions made by the program are basged
on the combination of large aggregates of such numbers, but this argument should
apply equally for a Bayesian system. It seems tc us more likely that
distillation of the clinical domain in a formal decision tree gives the program
so much more knowledge of the clinical problem that the quantitative details
become somewhat less critical to overall system operation. The explicit
decision network is a powerful knowledge structure; the '"bknowledge" in

deDombal’s svstem lies in conditional probabilities alone and there is no larger
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sctere to override the propagation of error as these probabilities are
mathematically'manipulated by the Bayesian routines.

The decision theory approach is not without problems, however. Perhaps the
most difficult problem is assigning numerical values (e.g., dcllars) to a human
life or a day of health, etc. Some critics feel this is a major limitatiom to
the methodolegy [112). Overlapping or coincident diseases are also not well-

managed, unless specifically included in the analysis, and the Bayesian
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exhaustive disease categories. Problems of symptom conditional dependence still

remain, and there is no easy way to include knowledge regarding the time course

£

of diseases. Gorry points out that his program was also incepable of

recognizing circumstances in which two or more actions should be carried out
concurrently. Turthermore decision theory per se does not provide the =ind of
focusing mechanisms that clinicians tend to use when they assume an initial
diagnostic hypothesis in dealing with a patient and discard it only if
subsequent data make that hypothesis no longer tenable. Other similar
strategies of clinical reasoning are becoming increasingly well-recognized [48]
and account in large part for the applicationms of symbolic reasoning techniques

to be discusseé in the next section.

g Svitbolic Reasoning Avproaches

g.1 Overview

In the early 1970°s researchers at several institutions simultanecusly
began to investigate the potential applications to clinical decisior making of
symbolic reasoning techniques drawn from the branch of computer science known as
artificial intelligence (AI). The field is well-reviewed 1in a recent Yook by
Winston ({120]. Although the term "artificial intelligence”™ has never been
uniformly defined, it 1is generally accepted to 1include those computer
applications in which the tasks require largely symbolic inference rather than
numeric calculation. Examples include programs that reason about mineral
exploration, organic chemistry, or molecular biology; programs that converse in
English and wunderstand spcken sentences; and pregrams that generate theories
fron observations.

Such programs gain their power from qualitative, experimental judgments -

codified in so-called "rules-of-thumb" or ‘"heuristics" - 1ia coatrast to
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aurerical czlculation programs whose power derives from the analytical equations
used. The heuristics Zocus the attention of the reasoning program on parts of
the problem that seem rwost critical and parts of the knowledge base that seem
most relevant. They also guide the application of the domain knowledge to an
individual case by deleting items from consideration as well as focusing on
iters. The result is that these programs pursue a line of reasoning as opposed
to following a secquence of steps in a calculation. Among the earliest symbolic
inference programs in medicine was the diagnostic interviewing system of
Kleinmumtz [(49]. Other early work included Wortman’s informatiom processing
system, the performance of which was largely motivated by a desire to understand
and simulate the psychological processes of neurologists reaching diagnoses
f1a211.

It was a landewark paper by Gorry in 1973, howvever, that first critically
analyzed cornventional approaches to computer-based clinical decision waking and
outlined his motivation for turning to newer symbolic techmiques [30]). He used
the acute renal failure program discussed in Section 7.2 [29)] as an example of
the problems arising when decision analysis is used atone. In particulsr, he
gualvzed some of the cases on which the rerzl failure program had failed but the
physicians ccnsidering the cases had performed well. His ccnclusions from these
observations include the following four points.

(1) Clinical judgment 1is  based less on  detailed knowledge of
pathophysiology than it is on gross chunks of knowledge and a good deal of
detailed experience from which rules of thumb are derived.

(2) Clinicians know facts, of course, but their knowledge is also largely
judgmental. The rules they learn allow them to <focus attention and generate
hypotheses quickly. Such heuristics permit them to avoid detailed search
through the entire problem space.

(3) Clinicians recognize levels of belief or certainty associated with many
of the rules they use, but they do not routinely quantitate or utilize these
certainty concepts in any formal statistical manner.

(4) It is easier for experts to state their rules in response to perceived
misconceptions in others than it is for them to generate such decision criteria
2 priori.

In the renal £failure program medical knowledge had been embedded in the
structure of the decision tree. This knowledge was never explicit, and

additions to the experts’ judgmental rules had generally required changes to the

tree itself.
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Rased on observations such as those abeve, Corry identified at 1least three
important preoblems for investigation:

(1) Concept Formatiom. Clinicazl decision aids had tradiriomally

bad no true "understanding" of medicine. Although explicit decision
trees had given the decision theory preograms a greater sense of the
pertinent associations, wmedical knowledge and the heuristics for
problem solving in the field had never been explicitly represented nor
utilized. So-—czlled "common sense" was often clearly lacking when the
programs failed, and this was often what most alienated potential
physician users.

(2) Language Development. Both for capturing knowledge from

collaborating experts, and for compunicating with physician users,
Gorry argued that further research on the development of cemputer-

based linguistic capabilities was crucial.

(3) Explanation. Dizgnostic programs had seldom emphasized an
gbility to explain the  Dbasis €£or their decisions in terms
understandable to the physician. System acceptability was therefore
inevitably limited; the physician would ofter hsve no basis for
deciding whether to accept the program’s advice, and might therefore
resent what could be perceived as an attempt to dictate the practice
of medicine.

Gorry s group at MIT and Tufts developed new approaches to examining the
renal failure problem in light of these observations [69].

Due to the limitations of the older techniques, it was perbaps inevitable
that some medical researchers would turn to the AI field for new methodologies.
Major research afeas in AI include knowledge representation, heuristic search,
natural language understanding and generatiom, and models of thought proceéses
— 23ll topics clearly pertinent to the problems we have been discussing.
Furthermore, Al researchers were beginning to look for zpplications to which
they could apply some of the techniques they had developed in theoretical
domains. This community of researchers has grown in recent years, and a recent

issue of Artificial Intelligence was devoted entirely to applications of AI to

biology, medicine and chemistry CEIRE:

lgMany of the systems described in this issue were developed on the SUMEX-
AIM computing resource, a- nationally shared system devoted entirely to
applications of AI to the biocmedical sciences. The SUMEN-AIM ccmputer is
physically located at Stanford University but is used by researchers nationwide
via connections to the TYMNET. The resource is funded by the Division of
Research Resources, Biotechnology Branch, Natiomal Institutes of Health.
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Among. the programs using symbolic reasoning techniques are several systems
that have been particularly novel and successful. Pople and Myers have
developed a system called INTERYIST cthat assists with test selection for the
diagnosis of all disezses in internal medicine {75]. This awesome task has been
remarkably successful to date, with the program correctly diagnosing 2z large
percentage of the complex cases selected from clinical pathologic conferences in
the mnajor medical journals?C, The program utilizes a hierarchic disease
categorization, an ad hoc scoring system for quantifying symptom-disease
relationships, plus some clever heuristics for focusing attention,

iscriminating between competing hypotheses, and diagnosing concurrent diseases
[761. The system currently has an inadequate human interface, however, and is
not yet implementad for clinical trials.

At Rutgers Urniversity Weiss', ¥ulikowski, and Safir have developed =z model
of ophtheomologic reasonipg regarding disease processes in the eye, specifically
glaucema [117]. In this specialized applicaticn area it has been possible to map
relationships between observations, pathophysiologiec states, and disease
categories. The resulting causal associational network (termed CASMET) forms
the basis for a reasoning program that gives advice regarding disease states in
zlaucoma patients and generates management recommendations.

For the AI researchers the question of how best to manage uncertainty in
medical reasconing remains a centr2l issue. All the programs mentioned have
developed ad hoc weighting programs and avoided formal statistical approaches.
Others have turned to the work of statisticians and philoscophers of science who
have devised theories of approximate' or inexact reasoning. For exawmple,
echsler [114] describes a program that is based upon Zadeh’s fuzzy set theory
[124]. Shortliffe and Buchanan [94] have turned to confirmation theory for their

nodel of inexact reasoning in medicine.

8.2 Exarple

The symbolic reasoning program selected for discussion is the MYCIN System
at Stanford Uaiversity [95]. The researchers cited a variety of design
consideraticons which wmotivated the selection of >AI methodologies £for the
consultation system they were developing [92]. They primarily wanted it to be
useful to physicians and therefore emphasized the selection of 2 prcblem domain

in which phvsicians had been shown to err frequently, namely the selection of

A.1.M.

I

2Cpata commmicated by Drs. ?ogle and Myers at the Second Annual
Workshop, Rutgers University, June 19%75.
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antibiotics for patients with infectionms. They also cited human dissues that
they felt were crucial to make the system acceptzble to physiciens:

(1) it should be z2ble to explain its decisions in terms a2 line of reasoming that
a physician can understand;

(2) it should be able to justify its performance by responding to questions
expressed in simple English;

(3) it should be able to "learn” new information rapidly by interacting directly
with experts;

(4) its knowledge should be easily modifiasble so that perceived errors can be
corrected rapidly before they recur in another case; and

(5) the 1interaction should be engineered with the user in mind (in terms of
prompts, answers, and informaticn volunteered by the system as well as by
the users).

All these design gcals were based on the observation that previous ccmputer
decision aids had generally been poorly accepted by physicians, even vwhen they
were shown te perform well on the tasks for which they were designed. MICIN‘s
developers felt that barriers to acceptance were largely conceptual and could be
counteracted in large part if a system were perceived as s clinical tool rather
than a dogmatic replacement for the primary physician®s own reasoning.

FKrowledge of infectious dJdiseases is represented.in MYCIM as production
rules, each containing a 'packet” of knowledge obtained from collaborating
experts (9512, a production rule is simply a conditional statement which
relates observations to associated inferences that may be drawn. TFor example, a
MYCIN rule might state that "if a bacterium is a gram positive coccus growing in
chains, then it 1is apt to be a streptococcus." MICIN‘s power is derived from

such rules in a variety of ways:

(1) it is the program that determines which rules to use and_ Low they should be
chained together to make decisions about a specific case<+;

(2) the rules can be stored in a machine-readable format but translated into
English for display to physicians;

(3) by removing, altering, or adding rules, the system’s knowledge structures
can be rapidly modified without explicitly restructuring the entire
knowledge base; and

(4) thke rules themselves can often form a coherent explanation of system
reasoning if the relevant ones are translated into English and displayed in
response to 2 user’'s question.

Associated with all rules and inferences are numerical weights reflecting
the degree of certainty associated with them. These numbers, termed certainty

factors, form the basis for the system’s inexact reasoning in this complex task

2lproduction rules are a methodology frequentl enploved
gy 1 b4 pi03

- in AI research
[9] and effectively applied to other scientific problem domains [A].

2 14 ; . ..
22The control structure vtilized is termed "goal-oriented" znd is similar
to the comnsequent-thecrenm methodolegy used in Hewitt’s PLANNER ([37].
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demain {941, They allow the judgmental knowledge of experts to be captured in
rule form and then utilized in a consistent fashion.

Tne MYCIN¥ Svstem has been evaluated regarding its performance at therapy
selection for patients with either septicemia [(123] or meningitis [122]. The
program perforoms comparably with experts in these two task domains, bﬁt as yet
it has no rules regarding the other infectious disease problem areas. Further
knowledge base developument will therefore be required before MYCIN is made
available for clinical use; hence questions regarding its acceptability to
physicians cannot yet be assessed. However, the required implementation stages
have been delineated [93], attention has been paid to all the design criteria

mentioned above, and the program does have a powerful explanation capability
fagl.

8.2 Discussion of the Methodology

Symbolic reasoning techniques differ from the other methodologies mentiomned
in this article in that the computer techniques themselves are as vet
experimental and rapidly changing. Whereas the computations involved in Bayes”’
Treorem, for example, involve straightforward application of computing
techniques already well-developed, basic researchers in computer science
continue to develop new methodologies for knowledge representation, language
understanding, heuristic search, and the other symbolic reasoning problems we
have mentioned. Thus the AI programs tend to be developed in highly
experimental enviromments where short term practical results are often unlikely
te be found. The programs typically require large amounts of space and tead to
be slow, particularly in time-sharing environments. As has been true {or most
of the methodologies discussed, AI researchers have still not developed adequate
methods for handling concurrent diseases, assessing the time course of diseace,
nor acquiring adequate structured knowledge from experts. Furthermore, inexact
reasoning techniques tend to be developed and justified largely on iatuitive
grounds.

Despite these significant 1limitatioms, the techkniques of artificial
intelligence do provide a way to respond to many of Gorry’s observations
regzrding the Inadequacies of prior methodologies as described above [30}].
There are now several programs responsive to his criticisms. Szolovits and
Pauker have recently reviewed some applications of AI to mnedicine and have

attempted to weigh the successes of this young field against the very real
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